ill-identified diary

5 million yen salary expected.

R

[R] 非ガウシアン状態空間対応パッケージ, KFAS の使い方

R の状態空間モデル計算パッケージ KFAS は、正規分布以外のモデルにも適用可能な便利なパッケージである. この KFAS を, 交通事故件数モデルの実例を用いて解説する

[R] bsts パッケージの使い方

Google の研究者が開発した R 用の時系列予測パッケージ BSTS の理念と使い方を解説する.

[R] [bsts, dlm, KFAS] マーケティングの状態空間モデリング

概要 岩波 DS Vol. 6 での佐藤忠彦 (2017, 状態空間モデルのマーケティングへの応用)の記事でなされた小売業の売上量のモデリングを R で再現してみる. dlm と KFAS, そしてbstsパッケージを利用して, それぞれでプログラムを書いてみる. 最近はゆるめの読み…

[R] 計量経済学と機械学習の違い

概要 機械学習か経済学 (計量経済学) そのいずれかに関してある程度の知識がある人間向け もうすでにこのネタでブログその他がいくつも書かれたと思うがさらにダメ押し 実質的には, Mullainathan and Spiess (2017) のレビューと, 多クラス分類を例にしたデ…

[R] 予測モデルを作るには formula を活用せよ

予測モデルを構築する時は変数の変換と取捨選択を試行錯誤する必要があるが, R の formula を活用すれば楽にできる.

[R] [教材]アニメーションで学ぶカルマンフィルタ

概要 すごく今更感があるが, カルマンフィルタのフィルタリングの話. アニメーションを作ってみたかっただけともいう. 簡単な説明なのでもっと具体的な話は他の文献で勉強して欲しい. カルマンフィルタのアニメーションを作成している記事は既にがあるのだが…

[stan][R] RFM分析と階層ベイズ法 (解決編)

前回うまくいかなかった stan を用いたRFM分析の決着編。

[stan] [jags] ggmcmc でMCMCの事後診断

概要これまで, stan などのサンプリング結果を R で処理するのが面倒だと思っていたのだが, いまさら ggmcmc パッケージという便利なものに気づいた. rstan, rjags などの R と連携できるパッケージと組み合わせるとトレースプロットやコレログラム, 事後密…

[R] glmnet を glm みたいに使う

概要 本文よりリンクの面積の方が大きいしょぼい記事 glmnet() を glm() の構文っぽく使う関数を雑に作った. 今は caretがあるのであまり意味はない. 内容glmnet パッケージの glmnet() は名前でわかるように一般化線形モデル (GLM) を elastic net で正則化…

[R] 東京都の所得階級分布から元の分布を推定する方法

土地統計調査の世帯収入は不完全な階級化データでしか公開されないため, 全世帯の平均収入を直接計算することが出来ない。そこで、東京都のデータを使って確率モデルを仮定して世帯収入分布を推定すること方法を紹介する。

[STAN] [R] STAN の出力加工方法2 DIC の計算

概要 前回の(R) Stan の出力加工方法 - ill-identified diaryのおまけ的な形で書いた. BUGS には DIC を計算する機能があるらしいが, rstan にはないので書いてみた. Spiegelhalter et al. (2002) で提案された DIC, デビアンス情報量規準はベイズ統計でモデ…

(R) Stan の出力加工方法

概要 忙しくて2ヶ月連続無更新になりそうになっているところをなんとか回避したいという妥協の産物 stan および rstan のモデルの事後診断機能がやや物足りないのでそれを補うヒント 本当に簡単な話 2016/10/07: Accessing the contents of a stanfit object…

[stan] [R] ベクトル ARIMA (VARIMA) で人口予測 (?)

概要 前回 VARMA の話をしたのに関連して, 単なるテクニカルな話題から, もう少し実用性のある話にしてみた. 都道府県別の人口の時系列データを VARIMA を当てはめてみた. 今月は時間がなかったのであまり大した内容ではない. 5ページ程度. 中途半端. VARMA …

[R] [Stan] で ベクトル ARMA (VARMA) を推定

Stan で VARMA のパラメータを推定するプログラムを用意した. Stan は始めたばかりなのでまだ効率的なコードでないかもしれない.

[QGIS] [R] QGIS と空間統計モデル (CARモデル)

概要・前置き 以前も何度か R で地図を作る方法を紹介していたが, 自分のプログラミングテクが雑なこともあり, 冗長なコードの掲載であまり便利でないのではという印象を持たれる恐れもあった. そこで, GUI で操作のできるわりに高機能な QGIS (Quantum GIS;…

[R] ふだんと少し違うソローモデル

概要 普段とは趣向を変えて, R でソローモデルのシミュレーションをする. そのままだとつまらないので, ソローモデルの人口成長の前提条件をロジスティック法則としてみる. 分量はPDF換算で 6 ページ. ロジスティック法則についてソローモデルや, 他の多くの…

時系列編の続き: サンプルサイズが小さいときの情報量基準

概要前回の[[R] 回帰分析で適切な方法を使わないとどうなるか (時系列編) - ill-identified diary]で, 「時系列分析の場合は線型過程のラグ項の次数が分からないことが普通ではないか (なので実用性に欠ける用例でないか)」という指摘をいただいたので, 過去…

[R] 回帰分析で適切な方法を使わないとどうなるか (時系列編)

概要 前回 大数の法則の視覚化から理想の推定量を考える - ill-identified diary の最後に上げた具体例の, 時系列分析の場合についても, 推定量の違いから生じる結果を視覚化してみた. 時系列はあまり詳しくないので操作変数編より内容が薄い. 安定な自己回…

[R] 回帰分析で適切な方法を使わないとどうなるか (操作変数編)

概要 大数の法則を視覚化した前回 大数の法則の視覚化から理想の推定量を考える - ill-identified diary の最後に挙げた具体例の, 操作変数の場合についても, 推定量の違いから生じる結果を視覚化してみた. 通常最小二乗法と操作変数法 (2段階最小二乗法) だ…

大数の法則の視覚化から理想の推定量を考える

概要 シミュレーションで「大数の法則」を視覚的に表しながら説明してみる. 推定量の「一致性」「不偏性」「有効性 (効率性)」とはなんなのかも説明 異なる性質を持つ推定量が大数の法則のもとでどういう違いが出るのかを視覚的に表す. というか中心極限定理…

[計量経済学] 非線形モデルと操作変数の応用例

概要 前回 [GMM] 非線形モデルでの一般化モーメント法と操作変数 - ill-identified diary の続き. 操作変数を用いる非線形モデルの例として, 2値選択の場合の手法を紹介する. 前回予告ではロジットと言ったが, プロビットの話になった. 文章量はpdf換算6頁程…

[R] タイムゾーン変換

概要 Date-time オブジェクトのタイムゾーン変換がよく分からなかった. 実はちゃんとリファレンスに書いてあった. 詳細 文字列を日付として取り込む場合, as.POSIX* を使う(strptime() 関数というのもある). さらにこのとき, タイムゾーンを指定すれば別の標…

[R] R で二段階最小二乗法 (操作変数法)

概要 今回は大した内容ではない sem パッケージで二段階最小二乗法をする tsls() 関数の構文がちょっとわかりづらかったのでメモ書き程度に残しておく 操作変数 のようなモデルがあるとして, が内生変数である, つまり 誤差項 と相関するとき, 通常の最小二…

[Twitter] [R] ツイッター選挙分析 (黎明篇)

概要 以前 紹介した streamR を利用して, 選挙前11日分のツイートを取得していた. しかし活用方法が分からないので簡単な集計結果のみ公開 ggplot2, dplyr などを使ってグラフにまとめる例を示す streamR でツイートを集める 1時間単位でツイートを収集し, t…

[GIS] [R] 日本国内の鉄道網を可視化してみる (後編)

画像は60年代の東京都心の路線 (変わってない) 前回までのあらすじ 国交省の国土数値情報データベースからダウンロードした国内の過去存在した鉄道のデータを R で読み込み, 任意の時期の鉄道を表示する方法を紹介した. しかし, R では静止画像で表示するこ…

[GIS] [R] 日本国内の鉄道網を可視化してみる

今回やること 国土交通省の国土数値情報ダウンロードサービスから鉄道の時系列データをダウンロードし, 国内の鉄道路線網がどう変わっていったかを, R を用いた処理方法を解説しつつ, 可視化してみる. 今回も R を使ってグラフを作成する. 以前の[R] Rで学ぶ…

[発展編] 多項ロジットの話

前回の多項ロジット (混合ロジット) の話に引き続いて, 多項ロジットが使えない場合の手法について書いておく. 今回言及するのは: IIAの仮定を検証する方法 ネステッド・ロジット 実行方法 一般化極値 (GEV) モデル 混合モデル (Mixture Model) 実行方法 で…

[離散選択] 非集計データの購買行動

2014/06/12: データの加工方法を加筆 2014/06/14: 多項ロジット, 条件付き・混合ロジットを混同しないよう修正 離散選択が消費者の購買行動を分析するのにどう利用されているか, ということについて調べていたので, その要約を書いておく. 自分はマーケティ…

[R] Rで学ぶ都知事選のデータ可視化【地理データ編】

注記 2014/11/8 シェイプファイルの利用元を ESRI から国土数値情報に変更し, 若干修正 概要 maptools パッケージを使ってGISデータをRに取り込み, 操作する方法を紹介する 意地でも ggplot2 パッケージをつかってGISデータからコロプレス地図 (塗り分け地図…

[R] 都知事選挙を題材に学ぶ ggplot2 の作例

概要 前回 (ggplot2 で積み上げ折れ線グラフ(エリアプロット)を作成する方法) に引き続き, ggpplot の作例を紹介する. 前回は時系列データから積み上げ折れ線グラフを作成したのに対し, 今回は2014年2月9日に行われた東京都知事選挙の結果という横断面デー…